Wadge Hierarchy on Second Countable Spaces

Reduction via relatively continuous relations

Yann Honza Pequignot

Université de Lausanne

Université Paris Diderot

Winter School In Abstract analysis <u>Set Theory & Topology</u> Hejnice, 15th January – 1st February, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Classify Definable subsets of topological spaces

X a 2^{nd} countable T_0 topological space:

A countable basis of open sets,

Two points which have same neighbourhoods are equal.

Borel sets are naturally classified according to their definition

$$\begin{split} \boldsymbol{\Sigma}_{1}^{0}(X) &= \{ O \subseteq X \mid X \text{ is open} \}, \\ \boldsymbol{\Sigma}_{2}^{0}(X) &= \Big\{ \bigcup_{i \in \omega} B_{i} \mid B_{i} \text{ is a Boolean combination of open sets} \Big\}, \\ \boldsymbol{\Pi}_{\alpha}^{0}(X) &= \{ A^{\complement} \mid A \in \boldsymbol{\Sigma}_{\alpha}^{0}(X) \}, \\ \boldsymbol{\Sigma}_{\alpha}^{0}(X) &= \Big\{ \bigcap_{i \in \omega} P_{i} \mid P_{i} \in \bigcup_{\beta < \alpha} \boldsymbol{\Pi}_{\beta}^{0}(X) \Big\}, \quad \text{for } \alpha > 2. \end{split}$$

Borel subsets of
$$X = \bigcup_{\alpha < \omega_1} \boldsymbol{\Sigma}^0_{\alpha}(X) = \bigcup_{\alpha < \omega_1} \boldsymbol{\Pi}^0_{\alpha}(X)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Wadge reducibility

Let X be a topological space, $A, B \subseteq X$. A is Wadge reducible to B, or $A \leq_W B$, if there is a continuous function $f : X \to X$ that reduces A to B, i.e. such that $f^{-1}(B) = A$ or equivalently

$$\forall x \in X \quad (x \in A \iff f(x) \in B).$$

Bill Wadge

The idea is that the continuous function f reduces the *membership question* for A to the membership question for B.

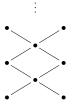
- The identity on X is continous, and
- continuous functions compose, so

Wadge reducibility is a quasi order on subsets of X. Is it useful?

Hierarchies?

On Polish 0-dimensional spaces, the relation \leq_W yields a nice and useful hierarchy, by results of Wadge, Martin, Monk,

Louveau, Duparc and others.



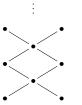
Thanks to a game theoretic formulation of the reduction.

イロト イヨト イヨト イヨト

Hierarchies?

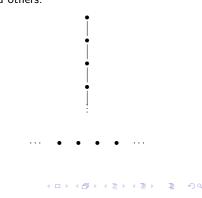
On Polish 0-dimensional spaces, the relation \leq_W yields a nice and useful hierarchy,

by results of Wadge, Martin, Monk, Louveau, Duparc and others.



Thanks to a game theoretic formulation of the reduction.

On non 0-dim metric spaces, and many other non metrisable spaces the relation \leq_W yields no hierarchy at all, by results of Schlicht, Hertling, Ikegami, Tanaka, Grigorieff, Selivanov and others



The nice picture is lost...

Reduction by continuous functions yield a nice hierarchy of subsets of Polish 0-dimensional spaces.

To get a nice hierachy outside the realm of Polish 0-dim spaces:

 Motto Ros, Schlicht and Selivanov have considered reducibility by reasonably discontinuous functions.

We propose to weaken the second fundamental concept at stake namely, functionality:

 We want to consider reducibility by *relatively continuous relations*.

Reductions

Fix sets X, Y, and subsets $A \subseteq X$, $B \subseteq Y$. A *reduction* of A to B is a function $f : X \to Y$ such that

$$\forall x \in X \ (x \in A \leftrightarrow f(x) \in B).$$

A total relation from X to Y is a relation $R \subseteq X \times Y$ with $\forall x \in X \exists y \in Y \ R(x, y)$, in symbols $R : X \rightrightarrows Y$.

Definition

A *reduction* of A to B is a total relation $R: X \rightrightarrows Y$ such that

$$\forall x \in X \ \forall y \in Y \ (R(x,y) \to (x \in A \leftrightarrow y \in B)),$$

or equivalently

$$\forall x \in X \ (x \in A \land R(x) \subseteq B) \lor (x \notin A \land R(x) \cap B = \emptyset)$$

where $R(x) = \{y \in Y : R(x, y)\}.$

Reductions, basic properties

Basic Properties Let $A \subseteq X$, $B \subseteq Y$, $C \subseteq Z$, and $R : X \Rightarrow Y$, $T : Y \Rightarrow Z$: If R reduces A to B and T reduces B to C, then $T \circ R = \{(x, z) : \exists y \in Y \ R(x, y) \land T(y, z)\}$ reduces A to C.

Let \mathcal{R} be a class of total relations from X to X with

1 the identity on X belongs \mathcal{R} ,

2 \mathcal{R} is closed under composition.

For $A, B \subseteq X$,

A \mathcal{R} -reducible to $B \iff \exists R \in \mathcal{R} \ R$ reduces A to B

This defines a quasi-order $\leq_{\mathcal{R}}$ on subsets of X.

Reductions, basic properties

Basic Properties Let $A \subseteq X$, $B \subseteq Y$, $R, S : X \Rightarrow Y$: If $R \subseteq S$ and S reduces A to B, then R also reduces A to B.

Let \mathcal{R} be a class of total relations from X to X with

- **1** the identity on X belongs \mathcal{R} ,
- **2** \mathcal{R} is closed under composition.

Let $\overline{\mathcal{R}} = \{ S : X \rightrightarrows X : \exists R \in \mathcal{R} \mid R \subseteq S \}$, then for any $A, B \subseteq X$,

A \mathcal{R} -reducible to $B \longleftrightarrow A \overline{\mathcal{R}}$ -reducible to B

In particular,

$$A \leq_W B \iff A \overline{\mathcal{W}}$$
-reduces to B .

where $\mathcal{W} = {\text{graph}(f) : f : X \to X \text{ is continuous}}.$

Admissible representations

Let $f, g :\subseteq \omega^{\omega} \to X$ be partial maps. Say f continuously reduces to $g, f \leq_W g$, if

 $\exists \text{ continuous } r: \text{dom } f \to \text{dom } g \quad \forall \alpha \in \text{dom } f \quad f(\alpha) = g \circ r(\alpha).$

Proposition (Kreitz, Weihrauch, Schröder)

Let X be 2^{nd} countable T_0 . There exists a partial map $\rho :\subseteq \omega^{\omega} \to X$ such that

- ρ is continuous (and surjective),
- (\leq_W -greatest) \forall continuous $f :\subseteq \omega^{\omega} \rightarrow X$, $f \leq_W \rho$.

Such a map is called an admissible representation of X.

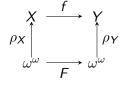
If $(V_n)_{n \in \omega}$ is a basis for X, then one can take $\rho :\subseteq \omega^{\omega} \to X$:

$$\rho(\alpha) = x \quad \longleftrightarrow \quad \{\alpha(k) : k \in \omega\} = \{n : x \in V_n\}.$$

Relatively continuous functions

Let X, Y be 2^{nd} countable T_0 spaces. A map $f: X \to Y$ is *relatively continuous* if for some (hence any) admissible representations ρ_X , ρ_Y there exists a continuous $F : \operatorname{dom} \rho_X \to \operatorname{dom} \rho_Y$ such that

$$\forall \alpha \in \operatorname{dom} \rho_X \quad f \circ \rho_X(\alpha) = \rho_Y \circ F(\alpha)$$



 $\begin{array}{cccc} X & \stackrel{f}{\longrightarrow} & Y & \text{Proposition} \\ \rho_X & & & & & & \\ \omega^{\omega} & & \stackrel{f}{\longrightarrow} & \omega^{\omega} & & f : X \to Y \text{ is relatively continuous iff it is} \end{array}$ continuous.

If ρ_X is not injective, a continuous map $F : \operatorname{dom} \rho_X \to \operatorname{dom} \rho_Y$ may very well induce *no* function from X to Y. We can have $\alpha \neq \beta$, $\rho_X(\alpha) = \rho_X(\beta)$, and $\rho_Y(F(\alpha)) \neq \rho_Y(F(\beta))$.

Relatively continuous relations

Definition (Brattka, Hertling, Weihrauch)

X, Y 2nd countable T_0 spaces. A total relation $R : X \Rightarrow Y$ is *relatively continuous* if for some (hence any) admissible representations ρ_X , ρ_Y there exists a continuous $F : \operatorname{dom} \rho_X \to \operatorname{dom} \rho_Y$ such that

$$\forall \alpha \in \operatorname{dom} \rho_X \quad R(\rho_X(\alpha), \rho_Y(F(\alpha)))$$

Basic Properties

- **1** graphs of continuous functions are relatively continuous.
- **2** relatively continuous relations compose.
- 3 If $R, S : X \Rightarrow Y$, R relatively continuous and $R \subseteq S$, then S is also relatively continuous.

Reduction by relatively continuous relations

Definition

Let X be 2^{nd} countable T_0 , $A, B \subseteq X$. A *is reducible* to $B, A \preccurlyeq B$, if there exists a relatively continuous relation $R : X \Rightarrow X$ that reduces A to B.

Basic Properties

- $1 \leq is$ a quasi order on subsets of X.
- **2** If $A \leq_W B$, then $A \preccurlyeq B$.
- 3 For any admissible representation ρ of X, A ≼ B iff there exists a continuous F : dom ρ → dom ρ with

$$\forall \alpha \in \operatorname{dom} \rho \quad \Big(\alpha \in \rho^{-1}(A) \quad \longleftrightarrow \quad F(\alpha) \in \rho^{-1}(B) \Big).$$

the case of 0-dimensional spaces

Theorem

Let X be a 2^{nd} countable T_0 space. The following are equivalent.

1 X is 0-dimensional.

2 X admits an injective admissible representation.

So in a 2nd countable 0-dim space X, for $R: X \rightrightarrows X$:

 $R \text{ is relatively continuous } \quad \longleftrightarrow$

R admits a continuous uniformizing function.

This is not at all the case in the real line $\mathbb R,$ for example.

Corollary

X 2^{nd} countable 0-dim, $A, B \subseteq X : A \leq_W B \leftrightarrow A \preccurlyeq B$. That is, on 2^{nd} countable 0-dim spaces

Wadge reducibility = reducibility by relativ. cont. relations.

Borel representable spaces

Definition

A 2nd countable T_0 space X is called *Borel representable space* if there exists an admissible representation ρ of X whose domain is Borel (in ω^{ω}).

Borel representable spaces include

- every Borel subspace of any Polish space,
 - i.e. every Borel subspace of $[0,1]^{\omega}$.
- every Borel subspace of any quasi-Polish space,

i.e. every Borel subspace of $\mathcal{P}(\omega)$ with the Scott topology.

Most (all?) properties of Wadge reducibility on 0-dim Polish spaces extends to arbitrary Borel representable spaces via the reducibility by relatively continuous relations.

The nice picture regained

Analysis of Wadge reducibility on ω^{ω} (Wadge, Martin, Monk) and Determinacy of Borel games (Martin) directly yield

Theorem

Let X be Borel representable.

- For Borel sets A, B ⊆ X, either A ≼ B or B ≼ A^C (so antichains have size at most 2).
- **2** \preccurlyeq is well founded on Borel sets.

And it follows by results of Saint Raymond and De Brecht that

Theorem

Let X be 2^{nd} countable T_0 and Γ be Σ_{ξ}^0 , Π_{ξ}^0 or $D_{\theta}(\Sigma_{\xi}^0)$. Then if $B \in \Gamma$ and $A \preccurlyeq B$, then $A \in \Gamma$.